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on given mean values and whose rth derivatives have minimal L,-norm for
pe(l,0].  © 1999 Academic Press

1. INTRODUCTION

Let r>2 be fixed. For pe(1, 0], W7[0, 1] denotes the usual Sobolev
space

{feC [0, 1]: f"~Vis absolutely continuous and | /||, < oo}.
Let f}, ..., f, be given fixed real data, f; # f; ., i=1, .., n—1. Set
Ey={t=(t1, . 1,):0<t; < - <1,<1}.
For each te &, set
F(t 1) = {fe WiL0,11: f(1;)=fi i=1, ., nj.

The following problem is considered by de Boor [6] and Fisher and
Jerome [7]:

inf{Hf(’)Hp:feF;(t;f)}. (1.1)
Pinkus [ 13] discussed the problem
inf inf {| /7], fe Fr(t; f)}, (1.2)
teE,
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where, for convenience of exposition, it is supposed that the interpolation

n

values { f;}7_, satisfy the conditions

(fi—fic)(fis1— 1) <O, i=2,.,n—1 (1.3)

Pinkus proved that the solutions of the problem (1.2) must be of a par-
ticular form given by the solutions of (1.1), and the solutions must also be
strictly monotone on [¢;, ¢;,,] for each i=1, .., n—1. Uniqueness of the
solution to (1.2) is proved for p = co by Pinkus [ 13], for p=2 in case r =2
by Marin [10] and in case r =3 by Uluchev [16]. A generalization of the
problem (1.2) allowing equalities in the assumption (1.3) is discussed by
Bojanov [3]. Naidenov [ 11] gave an algorithm for the construction of the
solutions to (1.2).

The purpose of this paper is to extend the problem (1.2) to the case of
interpolation of mean values over intervals with fixed lengths; i.e., when we
have interpolation values

1 Li+h

Thi " x) dx, i=1,..n,

where {h;}7_, are fixed numbers. These numbers must be small enough to
assure that the intervals [¢,—h,, t;+h;], i=1,..,n are disjoint. We
introduce some notation. Set

Eh={t=(ty,.n 1,):0<t;, —h <ty +hy< -+ <t,—h,<t,+h,<l1},

where /iy, .., h, are fixed real number such that A4, e(0,1/2(n—1)),
i=1,.,n,and h={h}7_,. Let e, .., e, be given positive numbers and

e={(—=D" e},

With each te Z” and e we associate the set of functions

. . , ) 1 ti+h i )
W”(t;h;e):{fewp[o’l]'% tiihif(x)dx=(—1) 1e,.,z:l,...,n}.
Set

min{e;}7_,

:max{ei}" (n—1)c(r)

i=1

where c¢(r)=(r+2).72* " 'rl. We impose the following restriction on
{hif i1

1, .
h,-<16—Mh, i=1,..,n, for pe(l, w0), (L4)
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and

1 ,
hi<@h, l—l,...,n, for p = 0,

where M is the constant from the following theorem (see [ 17, Theorem 5.6]).

THEOREM A. For r=2 and 1 <p < oo, there is a constant M depending
only on r such that for every fe W;[0, 1]

u NSO, <MLl +ulfD,), k=0,

where 0 <u < 1.

We consider the extremal problem

tigndfg inf {[ /7 ,: fe Wi(t; h;e)}. (1.5)

We give a characterization of the solution of (1.5) and prove the unique-
ness of the extremal function for p = co. When /;,=0, i=1, ..., n, this is the
problem (1.2). The results in this paper are based on the total positivity
structure of the problem. Some other extremal problems concerning
interpolation in the mean we studied by Subbotin [15].

We assume that n>r. If n<r, then for any choice te 5", there exists a
polynomial p of degree r—1 for which (1/2/,) [4*% p(x)dx=(—1)"""e,,
i=1, .., n. Moreover p’(x)=0 and our problemlis ltrivially solved.

In Section 2 we discuss some auxiliary results. In Section 3 we consider

the solving of (1.5).

2. SOME AUXILIARY RESULTS

In order to solve (1.5) we must consider first the problem
inf {| /] ,: fe Wi(t; h; e)}. (2.1)

When /;,=0, i=1, ..., n, this is the problem (1.1). Let te Z®, n>r>2, and
e be fixed. We introduce some preliminary definitions and properties. Set
0;={t;—h; t;+h;}, i=1,.,n, and suppose that 0<z,—h, <t;+h; <
t,—h,<t,+h, - <t,—h,<t,+h,<1. Let II, denote the set of
algebraic polynomials of degree less than or equal r. Denote by

i i

L(f) 1j fiyd,,  i=1,.,n

2/1,- ti— hi
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DErFINITION 1. Given pairs of points {6 }iZ7 and an integrable function
/. its rth “divided difference” over the pairs of points J;, ..., 0, , is defined
to be the coefficient of x" in the unique polynomial p(x) € I, satisfying the
conditions [;(p)=L,(f), j=1, ... i+r.

When 4, =0, i=1, ..., n, this is the usual divided difference. Let us explain
the new “divided differences” a bit more. Denote by

U, 1, oy 75 15y vy By y) det{t | J A0 P

and

U(O’ la . 1 j; [l’ [431) z+r) det{fk(tj) ]r€i=+0r’j=i’
where f,(t)=t*, k=0, ..,r—1 and f,(t) = f(t). Then, as is well known, the
usual divided difference of f at the points ¢, ..., ¢, is simply

U0, 1, i =1, fity o tyy,)
U0, 1, r—1,11,

PR ERRAL] t+r)

f[li’ oo li+r] =
The new “divided difference” is simply

f[éis L] 5i+r]

t;+h; + h;
_Szﬁ»—hﬁ . j,ﬁ; i U0, 1y ey 1 =1, £y 85, vy Si,) sy - dSi
T+ h + h; . :
jt:7h5~-~§21: + U(0, 1, ...,r—l,r, Siy s Sipp) ds; oo ds; .,

From this is easy to see some properties analogous to those of the usual
divided differences (see Schumaker [14], Bojanov, Hakopian, and
Sahakian [5]).

1.

i+r l](f)

VAR ) I (2.2)

where w(r =(t—1t)) - (t—t)_Nt—1/ ) (t—7l.,), t]e(tp—
te+h), k=i, ., i+r k#]j.
2. f[d; . 0;4,] 1is the unique linear functional of the form

D,(f)=X" " c,l.(f) satisfying the conditions

j=1i=J']

D.(x*) = =0,..,r—1
,(X)_;), k=0,..r—1, (23)

3. For any fe(ti_hh ti+r+hi+r) €¢{ i+17 t+1a-'~: ti+r_hi+r}s
E¢{t,+hy s tiy,+h, . _,}, there exists a constant o (0, 1) such that
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3a. if Ee(t;—hy, t;+ h;) for some j, then

]’ J
SL0is s 0i4, 1 =0 [y 000 0,1, 08,0, 415 s 0, ]
+(1—a) fL0;s s 5]-_1,52, Oj1s o Oigrls
where 6¢={t,—h;, &} and 62={& 1,4+ h;}.
3b. If Ce(t;+hy, —h

ti1—h; ) for some j, then

f[ Qs e l+r] _(xf[5za () z+r—1a 55] +(1 _O() f[éé’ 5i+15 e 5i+r]’

where 0. ={&—h:, &+h:}, and h. is sufficiently small so that ¢;+h;<
E—he<ClHhe<tji1—lhjiq.

Now we can define “B”-splines using the above definition and properties.

DEerINITION 2. The function

Bi(l) = ( . _t)r+_1 [(5,-, eey 5i+r]a

is called the rth order “B”-spline associated with the pairs of knots
)

ir s Ot g pe
Here we also have properties analogous to those of the usual B-splines.

4' Bz( ) Oforx¢( 17 t+r+hl+r) andB( )>OfOI'XE(li—h
ti+r+hi+r)'

Let S, »(f) denote the number of sign changes of the function f on
[a, b]. Similarly, for a vector fe R™\{0}, S~(f) denotes the number of
sign changes of the vector f.

i

5. Variation diminishing property.

Si (X BB ) <SP )

i=1

6. Total positivity.
A:=det { B;(y;)} 2T~ =0,

for every choice of the points y; < --- <y, and integers |<m<n—r,
I<ii < <ip,<n—r, 1<j,< - <j,,<n—r. Moreover

A>0,

if and only if y; esupp B;, [=1, .., m. Here supp B;= {x: B;(x) #0}.
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These properties we can analogously to the properties of the usual
divided differences and B-splines and we omit it (see Schumaker [14],
Bojanov, Hakopian, and Sahakian [5]).

Let us return to the problem in (2.1). For f'e W}[0, 1] we have

i r—1 . 1
S = ¥ anx'+

=0

1
J, = O dy. (24)

Let te Z) be fixed. For f'e W/(t; h; e) set
Eizf[éia ooy 5i+r]9 i=1,...,n—r.

Taking the “divided difference” at the pairs of points J,, ..., d;,, of the
function f'€ W (t; h; e) and using (2.4), (2.3), and the definition of the B,
we obtain

1

1
E=r—ry J, B g dy. i=1n—r,

where g(y) = f)(y). Problem (2.1) is equivalent to

. 1o
1nf{|g|p:(r_1)! J, B g(y)dyzE,-,izl,...,n—r}. (2.5)

We may consider problem (2.5) as in the case for #;,=0, i=1, .., n (see de
Boor [6]). For pe (1, «0) (2.5) (and this (2.1)) has a unique solution of the
form

n—r g—1 n—r
e0)=|T | sien (T b)), 26)
i=1 i=1
where 1/p+1/g=1 and
o f)d .
E=p—py |, B &0 di=lner )

Equations (2.7) uniquely determine the coefficients {b,}7_7 in (2.6). To
obtain the unique solution to (2.1) we write

-1

fx)= 3 axi+

i=0

1
_ r—1 % d
=) fo (x—=p) g*(»)dy
and uniquely determine the {a;} 7”5 so that (1/2h,) jﬁ;fﬁi f(x)dx=
(=1)~lte, i=1,..r From (2.7) it follows that f e Wi(t h;e).
Further we will need the following two lemmas.
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LemMMA 1. Let P(x)=>7"

2

[ b;B;(x), where the {b;}7_] are determined

1
] B IPOI sign (PO dy. i,

P(x) has exactly n—r —1 sign changes on (0, 1) and does not vanish on any
subinterval of 0, 1].

Proof. We remark that E;E, ;<0 for i=1,..,n—r—1. Indeed from
(2.2) it follows that

: (=1 e
sign E; =sign ) ————2
j=i lj(CO(',T‘I))
i+r
=sign Z (=11 (=1)y+iT=(=1)+—1,

j=i

For the proof that p(x) has exactly n —r — 1 sign changes on (0, 1) we may
proceed analogously to that in Pinkus [13] (see Proposition 2.1) using
properties 4-6 of the new “B”-splines, the variations diminishing property
of Total Positivity of matrices (see Karlin [8]) and the fact that
EE, <Ofori=1,.,n—r—1.

We will show that P(x) does not vanish on any subinterval of [0, 1].
Since P(x) has exactly n—r—1 sign changes and since we have the

inequality
S7(by, by, ) <n—r—1,
it follows that S ~(b,, ..., b,_,)=n—r—1 and
b, (—1)=1+1 %0, i=1,.,n—r. (2.8)
Using the definition of B;(x) and (2.2) we get

—(t;—h;—x)%

i+r 1 h.—x)°
BO =(—1y -1y Y, L 2/;11@’(%"))

j=i J
Therefore

BO(x)(—1)*/>0  for xe(t;—h, t;+h), j=i,wmitr, (29)
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and

B§’>(x)=0 for XG(Zj+hj» 1= hi), J=leitr—1
(2.10)

i.e., the rth derivative of B;(x) strictly alternates in sign as we pass from
(t;i—h, t;+h) to (4;41—hjq, ;0 +h;4,) for j=i,..,i+r—1. By (2.8)
and (2.9) for xe(t;—h;, t;+ h;) we obtain

PO = (1)~ Y [5,BO(x)].

i=1
Since b, #0 for all i, and B{’(x) #0 on (t;— h;, t;,+ h;) for some i, it follows
that
(—1)/=1*"PO(x)>0 on (1,—h

J J°

ti+h;) for j=1,..,n  (2.11)
Therefore P(x) does not vanish on the subintervals (¢;—h;, t;+ h;) for
j=1,..,n

It remains to show that P(x)#0 on [#;+h;t; 1 —h; ] for
j=1,..,n—1. Assume the contrary, that P(x)=0 for xe[a, b] = [, + hy,
ty+1—hy 1] for some ke {1, .., n—1}. If we suppose that P(y) has i sign
changes on (0, a), then P(x) has at least n —r —2 — i sign changes on (b, 1)
since P(x) has exactly n—r—1 sign changes on (0, 1). The points, 0, a, b
and 1 are zeros of multiplicity r. Applying Rolle’s Theorem r times we
obtain that P™)(y) has at least i+r sign changes on (0, ) and at least
n—i—2 sign changes on (b, 1). It follows by (2.11) that when we pass from
(0, a) to (b, 1) we obtain one more sign change; i.e., P")(y) has at least
n+r—1 sign changes on (0, 1). From (2.10) and (2.11) we see that P")(x)
=0on [t;+h;, t; . —h;,,]forj=1,..,n—1and P"”(x) has exactly n — 1
sign changes on (0, 1). Thus we obtain a contradiction and Lemma 1 is
proved.

Denote by f(t; -) the unique solution of problem (2.1) for pe (1, ).

LEMMA 2. For fixed te 2", || fC(t; -)
of ey, ..., €,.

|, is a strictly increasing function

The proof proceeds analogously to that in Naidenov [11] (see
Lemma 3) using properties 1-6 of the new “divided differences” and
“B”-splines. We omit it.

Now we consider (2.1) for p=o0. By (2.5) we reduce the problem of
existence to a moment problem. It is standard (e.g., Hobby and Rice [12])
to show that there exists a g, |g(x)| = |/gll, for all x, with at most n —r — 1
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jumps which gives the appropriate moments. The next theorem gives one
solution to (2.1) for p= o0 in a particular form.

THEOREM 1. The set W’ _(t; h; e) contains a perfect spline P(x) of degree
r with exactly n—r —1 knots; i.e., a function P of the form

r—1 ) R n—r—1 )
P(x)=Y, a,-x’+ﬁ X420 (=D (x=&), |, (2.12)
i=0 : i=1
where 0 <&, < .- <&, _,_, <1. Moreover this perfect spline is a solution of
problem (2.1) for p = o0.

The existence of P(x) can be proved by the same argument as after (2.7).
The minimality property follows easily in many ways. For example, we
assume that | /| , < [P, for some fe W (t; h; e) Then by the inter-
polation conditions we have |g B,(1)(P"(¢) f(’)( =0, i=1,.,n—r.
But P")(x)— f™(x) has at most n—r—l sign changes on (0, 1) and does
not vanish identically on any subinterval of [0, 1], and thus cannot be
orthogonal to the WT-system {B,} 7.

Let Py(x) be the unique perfect spline with n—r—1 knots and {x?}7_,
be the unique set of points satisfying the following conditions

Py(x?)=(—1)"""(4/3) max{e;}7_,, i=1,..,n,

2.13
Pi(x9) =0, i=2, .. n—1, (2.13)

where x9=0, x°=1. The existence and uniqueness of such a perfect spline
P, and such a set of points {x?}7_, are proved in [1]. It holds || Py| ., =
(4/3) max{e;} 7_,

We will frequently use the following property of the perfect spline P of
degree r with n —r — 1 knots: If P changes sign n—1 times in (0, 1), then
P has exactly n— 1 zeros and P’ has exactly n — 2 zeros. This follows by an
application of Rolle’s Theorem (see, for example [5]).

LEMMA 3. If Py is the perfect spline from (2.13) and Ry= | P{’| ., then
Ry <(4/3) max{e;} 7_, (n—1)" 2~ (r+2)"rl (2.14)

0 0 0 0
Proof. Define I=max{x}, ,—x}}72/=x) ,—x;, x{=0, xp=1. We
have

(2.15)

because these points partition the whole interval from 0 to 1. Let &2,
i=1,..,n—r—1 be the knots of P,. P, and Py are perfect splines with a
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maximal number of zeros. For such perfect splines its zeros and knots
satisfy the so-called interlacing conditions; i.e.,

X; <§°<x i=1,..n—r—1.

i+r+1°
Therefore between xj and xj . we have at most r~|—1 knots of Py(x).
Suppose that k knots of PO(x) 11e between x " and x ] +1- Denote them by
Mis s Nk and 1 =Ns+1— s> S_O k (;70 1009 Me+1= x]%+1)- Between
two neighboring knots 7,, #,,, we have that Py(x) is a polynomial of
degree r, where [|[P{’ |, /r! is the absolute value of the coefficient of x". The
Markov inequality (see [9]) asserts that for every polynomial Q of degree
ron[—1,1]

1OV < ITV Mo 1@l os i=1, s,

where 7, is the rth degree classical Chebyshev polynomial. Applying this
inequality for i=r, Q= P, on [#,, #,,], We obtain

Ro I
HPOHOO = max |P0(X)| = 2r—1,1°
xe(p Nsy1) 2 ri

s=0, ..k, (2.16)

where Ry=[|P§’| . From (2.15) and (2.16) we get

k+1 /1ol o 227! ‘>1 I, =x° > ! 2.17
(k+1) Y ot =X =X > Pt (2.17)

Therefore, since kK + 1 <r+ 2, and in view of (2.17), we obtain

Ro<|Polls (n—1)" 22~} (r +2)"r!

Therefore (2.14) holds.

Now we will show some properties of P,, which we will need later. Since
PY(x) vanishes on (0,1) it easily follows that |P§’|,<||Py* "], for
j=0,.,r—1 and any pe[1, wo]. Therefore |Pqy| <[P .. Then we

can set u=.7(|Py|/IP" | and apply Theorem A for P,, k=1 and
p=o0. We obtain
1Pyl o S2M ||Po ||V | PG| (2.18)
y (2.13), (2.14), and (2.18), it follows that

1P| o < M(8/3) max{e;} 7_, c(r)(n—1). (2.19)
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P, has exactly n—1 zeros (see [1]) {z°}7Z}! =(0,1). Using Taylor’s
formula we see that

|P0( )| (x _T )HP£)H003 i:29'-‘9n9

|P0( )| (T _‘X)HPZ)Hooa izla"'sn_l'

Applying (2.19) in the last inequalities and by the choice of /; in (1.4) we
obtain

1

070 >— >, =2, ..
xl Tl—l ZM(I’I—I)C(F) i 4 s ey 1
(2.20)
1
O x> >, =1, .,n—1.
TN O M) e(r) e T
Therefore there exist points
O=hy, 2e(x ", i=2,..,n—1, °=1-h,,
such that
Po(t]—h;) = Po(1]+h,) i=2, . n—1,
1 A+ n 1 .
271,- . Pyx)dx=(—1)"""¢;, i=1,..n, (2.21)
( hl’t +h) ( i— 17‘[('))7 izla"'ana

where T0=0 and 2=1. We have ¢?>0, since (—1)""' Py(x)>0 for
te(r? |,79),i=1, .., n By (2.13) we see that

? < (4/3) max{e;} 7_,, i=1,..,n (2.22)
Using (2.21) we get
|Po(X)| < |Po(£0 = 1)) + 2k, |1 Pyl opr i=1, ..
Hence by (2.13), (2.19), (2.21), and (1.4), we obtain

0> |P(1—hy)| >max{e)"_,, i=1,..n. (2.23)
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3. SOLVING (1.5)

3.1. Case pe(1, o)

THEOREM 2. Let pe(l, 00) and let f*e W,[0,1] be a solution of the
problem (1.5). There exists t*e E® such that f* e Wi (t*; h; e). /* satisfies
the following conditions:

FEO(y Z b¥B,( ‘ _lsign <nirbi*8i(y)>, (3.1.1)

i=1 i=1

where 1/p+1/q—1 and B( )=(-—y) " [k, .., 06%.,], where of =
{tF—h;, tF+h}, j ,nand {b}}7-1 are determmed by the system of
equations

1
[ 60 f*O) dy=f*0F, 08,1, i=ln—r (312)
0

and
(3.1.3)

Proof. Let the function f* and the points t*={s*}7_, solve (1.5).
Since f* must also solve (2.1) for t* and pe(1, o), it follows that f*
necessarily satisfies (3.1.1) and (3.1.2).

It remains to prove (3.1.3).

Let Py(x) be the perfect spline from Lemma 3. Let the points {9}7_,
and the values {e?}7_, be chosen as in (221). Denote by g and g*
the unique solutions of (2.1) with interpolation points {#2}7_, and inter-
polation values respectively {(—1)""'e?}7_, and {(—1)""'e,}7_,. From
(2.23) we have ¢} >¢;, i=1, .., n. Therefore by Lemma 2 we have ||g*"|,
</lg"”ll,. On the other hand ||g”|, < [IP§’],, since from (2.21) we have
that P, satisfies the interpolation conditions in (2.1). Therefore if f*e
W (t*; h; e) is a solution of (1.5), then the following inequalities hold

17*1, < 1g* 1, < g1, < IPE - (3.14)

Since P, is a perfect spline, |P{(x)| = R, for all x and thus |PJ’|,=R,,
trivially. Therefore by (3.1.4), (2.14) and the last equality

I/*P), <(4/3) max{e,}7_, (n—1)" 2> "' (r+2)rl. (3.1.5)
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By the character of the data f* has at least n— 1 distinct zeros on (0, 1).
From Lemma 1 f*® does not vanish on any subinterval of (0, 1) and has
exactly n—r—1 sign changes. By Rolle’s Theorem it follows that f* has

exactly n—1 simple zeros 7, < --- <7,_; on (0,1). Therefore |[f*|,/
[ /*®|,<1. Then using (3.1.5) we apply Theorem A for f*, pe(l, ),

k=2and u=/[f*|,//*7|, to get
L/, <2MF*1S 27 (e(r)(n—1))* ((4/3) max{e;} 7 )*". (3.1.6)
Applying the inequalities

LIS < max | f*(x)| 727,
xe[0,1]

and

LF*0 == max |/*(x)] > min{e;}7_,.

in (3.1.6), we get

2/r
L/, <2M 5] (elr)n—1)2 <(4/ ) ma"{})

min{e}7_,
<(8/3) M |f*] (e(r)(n—1))? nnm (3.17)

Let x;€(t;,_4,7;), i=2,..,n— 1, be the extremal points of f*(x). Since f*’

i—1> %i

has exactly n—2 zeros on (0,1), f*(x) is monotone on [0, 7,;] and
[7,_1, 1] Then

LF*E= 1/ Cei ) (3.1.8)

where iy € {1, ..,n}, and x; =0, x,=1.
First we will show that

VAl = [HtE+hy) if ige {2 n—1},

th=h, ifip=1 and tr=1—h

n n

(3.1.9)

if igy=n.

Suppose that iy € {2, ..,n—1}. Using the properties of the usual divided
difference we get
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f*[xioa Tiy—15 T Zj ? (x—1), [xios Tip—1> Tio] S*(e)de,  (3.1.10)

T

ig—1
|/ *(xi)l
i T T d 1 = . : 3.1.11
e T 2l (Tiy = X)) (X3 — T4y = Tjy—1) ( )
(T, =T, — D(x—10) 4 [x5, 715 75, ] < L. (3.1.12)

Applying Holder’s inequality in (3.1.10) and in view of (3.1.11) and (3.1.12)
we obtain

|/ *(xi)l - L/ * (x|
(Tio_Ti071)(xi0_Ti071) ( —X; (xzo 751071)
1 T; 1/q
<<j° 1dz> 1£*"1,
Tip — Tig—1 \zp_y
kM
<Hf7HP. (3.1.13)
Tip — Tiy—1

From (3.1.7), (3.1.8), (3.1.13), and the choice of 4, in (1.4) we get
3 min{e;}7_,
8M((n—1) c(r))® max{e;} 7_,
3 (min{ei}?_l >2
>
8M((n—1) ¢(r))* \max{e;} 7_,
>4h; .

Analogously we see that ; —x; >4h, . Thus we obtain 7, — 7, _,>8h, if
io€{2,..,n—1}. In the cases i,=1 and i,=n we consider f*[0, 7, 7,]
and f*[t,_,, 7,_1, 1], respectively. Then analogously as above we show
that

t,>4h, and 1—1,_,>4h,. (3.1.14)

Therefore we can find a point 7, €(7; 1, 7, ), such that

IO?

f’?,0+h ( 1)!0—1d

A 77,

2h;
and

f*('ho—h,-o) :f*(ﬂi0+hi0)a if ige{2,..,n—1},

m=h, if ip=1, and n,=1—nh, if ij=n.
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Then 7, is the extremal point for the function F(x)= jx”’to f*(t)dt in
(Tiy—1>74) if g €12, ..., n—1}. In the cases iy=1 and iy =n, F(O ) is strictly
monotone on [Ah;,7,] and [7,_,, 1 —h,], respectively. Then |F(x)| attains
maximal values for x =7, and x =7, respectively.

Now if we assume that (3.1.9) does not hold, then

d;, >e;. (3.1.15)
Consider problem (2.1) for pe (1, oo) at the point

t=(1F, s 0 M B s s 1),

first with

and second with

e=(er, (=107 %e, (=10 d (=)o, 4, (—1)"e,).

There are unique solutions to these two problems which we denote by g
and g*, respectively. From lemma 2 and (3.1.15) it follows that [|g”|, <
lg*"],. On the other hand [g*||, < | f/*®|,, since /* satisfies the same
interpolation conditions at the points 7f, .. 15 _y, n;, (¥4, .. 1;f as g
Therefore g, < | /*®| ,, which contradicts the minimality property of /*.

We will estimate || /*| and | f*"(|,. From the Mean Value Theorem we
have f*(y;)) = ( —1)o=! e,, for some point y; € (¢} —h,, t}+h; ). First sup-
pose that iy € {2, .., n—1}. By (3.1.9) we have that x; e (¢*—h;, t}:+h,),
SHE—hy) =1+ h) and | f*(2F—h)| <|f*(y;)| =e;. Then s1m11ar1y

0 (3.1.10), (3.1.11), (3.1.12), and (3.1.13) we get

L/ *Ce)l = L * (=)l
(2h,)?

<|f*[t?g—hl i Uy 11

! w ”
<2h,- o 2/1 (x— 1) [ —hy x5+, 10 dt
171, (3.1.16)

2h
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Therefore

L5 = 1) < f 5k =R+ 20 |1,
<£’ +2h10 Hf*”H (3117)

Applying (3.17) and (1.4) in (3.1.17), we get
1/* <max{e; i, +3 L/ (3.1.18)

Therefore || f*| <3max{e;}7_,. If iy=1, then we consider /[0, y,,2y,].
From (3.1.14), y;<2y;<4h,<t,. Therefore |f(0)—2|f(y1)|/2y?<
/10, yi,2y,]l. Similarly to (3.1.16), (3.1.17), and (3.1.18) we obtain
|/(0)] =1l /*| <3max{e;}_;. Analogously we get [/(1)]=]/*]<
3max{e;}7_, if iy=n. Therefore | f*| <3max{e;}7_,. Applying this
inequality in (3.1.7) we get

(max{e;}7_,)?

17#71l, < 8M(etr)n = 1) =

(3.1.19)

By the Mean Value Theorem there are points y, e (tF —h;, t¥* +h;),
i=1, .., nsuch that f*(y,)=(—1)""'e,, i=1, .., n. Analogously to (3.1.13)
we obtain

If*( )| A,

min{e;}7_;
7.'1 )2< <|f*[T1 1> Vis T t]|< b

( T; ( —1) T,—Ti_1

for i=1, .., n. Then from (3.1.19), (1.4) and the last inequalities we see that

(min{e,}7_,)?
=17 S M(max{e,} ", (n—1) c(r))?

T, — 5> 2h;, i=1,..,n

1

T

Therefore we can find points #; € (t;_4, 7;), i=1, ..., n, such that

L™ pxieya ild, =1
2h,~ ”i_hi f (x) x_(_ ) i 1=1,..,n,
and
S —hy) = f*(n; + hy), for i=2,..,n—1,
’]1:h1= nnzl_hn'
Then 7, are the extremal points for the function F(x j"”’ f*(t)dt in

(t;_1,7;) for i=2,..,n—1. For i=1 and i=n, F(x) 1s strlctly monotone
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on [h;,7,] and [7,_4, 1 —Ah,], respectively. Then |F(x)| attains maximal
values for x =#, and x =7, respectively. Therefore

di=e;, i=1,..n (3.1.20)

If we assume that (3.1.3) does not hold, then we have at least one strong
inequality in (3.1.20). Further we obtain a contradiction with the mini-
mality property of f*, using Lemma 2 and similar arguments as in the
proof of (3.1.9). The theorem is proved.

3.2. Case p=

Denote by P, ,,_,_, . the set of perfect splines; i.e., functions of the form
(2.12), with n—1 distinct zeros 7,,..,7,_; satisfying 7,—7;,_,>2h,,
i=2,.,n—1,t,>2h,,1—1, ;>2h,, and |P"| =1

THEOREM 3. There exists a unique perfect spline PeP,,_._ o, a
unique set of points t* € E® and a positive number R such that

R ti*+hiP d 1)i—1! i—1
2 )y, P dx=(=1 ey i=l o

P is uniquely characterized by the conditions

P(t¥—h)=P(tF+h), i=2,.,n—1

1

The points {t}}7_, satisfy

i=1
O=tf—h <tif+h <t <ti—h,< - <1, <t¥—h,<tf+h,=1,
n—1

where {t;}7_\ are the zeros of P. Moreover, R is a strictly increasing
function of each e;, i=1, .., n.

Proof. Using a similar approach to that in Theorem 3.1 [4] we will
prove the existence of the desired spline P by a continuous deformation of
an initial perfect spline P, described by a system of nonlinear equations.
We choose P, to be the perfect spline from Lemma 3. This will assume that
the intervals over which we integrate are disjoint at each step. Let the
points {#%}7_, and the values {€?}7_, be those from (2.21).

Put e;(s)=e)+s(e,—ef), j=1,..,n, se[0,1]. For se[0,1] we will
construct a function P(s; -) of the form (2.12) with parameters

s s s s s N s s
Ay ooy Ay 5 By vy B3 Ty ooy Ty 15 Cs s 15 Ry,
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such that
P(s, 77) =0, i=1,..n—1,
P(t;—h;)— P(t;+h;) =0, i=2,.,n—1,
(3.2.1)
RS tf-+hiP di 1) 1 ( ) . |
5h Hdt=(—1)""¢; =1, ..
2/’1;‘ t?-h,- (S’ ) ( €ils), ! 5 ey 1y

where #] =5, and t =1—h,. Denote by 4(s) the Jacobian of (3.2.1) with
respect to {t3}72), {t | 21, R, { svr—y and {&S}7Z7 1. Here P(0, x) =
Po(xX)/|IP§ || o and Ro= [ PE ||

Als) = det J(s) T] P(x ]‘[ (P(E—h)— P+ k), (322)

where

n

R Gem
det J5) =y g || det T dy

i=1 -1

and T{(s) is the matrix

P(zy) up(zy) -+ u,—1(z1) @(z1,¢7) - (=1D)"""o(z1, 1)

P(Zn) uO(ZO) ur—l(zn) (p(zn»fi) (_l)n_rgo(zn’ f’z—r—l)

Here u;(¢)=1¢"and ¢(z, &) =(z— &) '. Expanding det 7(s) along the first
column we get

Rn n _— £+
det 708) = 3oy 2, (Z -1 f . P(zi)dzl->

s s
tl+h1 1.71+h,-71 ti+l+hi+1 t,+h,
X
5 5 5
n=h g fit

,1_hi—1 l_hi+1 tit_hn
xdetJ,(s)dz, ---dz;_,dz; -+ dz,, (3.2.3)
where J;(s) is the submatrix of
ug(zy) - up_q(zy) @(z,81) - (=102, &5 1)
uO(Zn) ur—l(zn) (p(zna éi) (_l)n_r(p(zna ‘;7;«71)
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with the ith row eliminated. We have from the total positivity of the
truncated power kernel (see [8]) and the fact in (2.21) that the intervals
(19— hy,, 1%+ h;) are disjoint that

1t det J,(0) >0, (3.2.4)

for ue{—1,1} fixed and i=1, .., n. Using (2.21) we see that

t(.)+h,-
(—l)i‘lf’ Po(z;) dz; = . i=1,.,n  (325)

0
£

t?+1,-
J Py(z;) dz;
t

0_1
1

We will show that det J;(0) #0 for some zje(t]‘.)—hj, t(.)—i-hj), j=1,..,n,
Jj#i i=1,.,n Letie{l,.,n} be fixed. Set y,=z;, j=1,..,i—1 and y;=
Zjp1s j=1.on—1. Then det J;(0)#0 if y, <&V <y, ,, j=1,..n—r—1;
i.e., the interlacing conditions hold. By the interlacing conditions between

the zeros and the knots of Pj we have

0 i=1,.,n—r—1, (3.2.6)

x?+1<é?<xi+r’

where x?, i=2, .., n— 1, are the zeros of Py. By (2.21) x° e (¢9—h;, %+ h,),
i=2,.,n—1. Denote x,=h,, x;=x°, i=2,.,n—1, x,=1—h,. Set
y;=x;if 1<j<i—1, and y;=x;,, if i<j<n—1. Then from (3.2.6) we
have

yj<f]9<yj+,, j=1,..n—r—1. (3.2.7)
From (3.2.2), (3.2.3), (3.2.4), (3.2.5), and (3.2.7) we obtain
4(0) #0.

Hence, by the Implicit Function Theorem, there exists a unique system of
continuous functions

Ay e Ay 15 Uy ey Uy 15 T s Ty 15 €0 ees 15 Ry,
defined in a neighborhood of 0, which satisfy (3.2.1). Thus, we have found
a solution P(s, x) of (3.2.1) for small s. In order to prove that A(s)#0 for
each se[0,1] we need to show that the intervals (z,(s)—h;, t,(s) + h;),
i=1, .., n, are disjoint; i.e.,

(t5—h, ti+h)c(ti_y,15),  i=1l.,n t5=0, 5=1. (328)
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Define P*(s, x) = R, P(s, x), R,= ||[P*"| . Analogous to (2.14) and (2.18)
for the perfect spline P* we have

R, < |P*| o, (n—1)" 2" (r+2)r!, (3.2.9)
|P*' || o S2M || P*| G D | P*O| L, (3.2.10)

By (3.2.9), (3.2.10), it follows that
[P* o <2M |[P*| o c(r)(n—1). (3.2.11)

From (3.2.1) and the Mean Value Theorem it follows that there exist
points y$ € (5 — h;, t5+ h;) such that P*(y$)=(—1)"te,(s),i=1, .., n Let
xi, i=2,..,n—1, be the extremal points of P* and x} =0, x{ =1. By the
conditions P*(t{—h;)=P*(t{+h;), i=2,..,n—1, in (3.2.1) it follows that
x; (i —hy ti+h), i=2,..,n—1. Let |[P*|,=|P(x;)|. Then

P*(x;) = P*(y;) + (xj — yi) P¥'(n),

where ne(yi, x})c (] —h;, t; +h ,)- Therefore
i [

lO 10 b

[1P*l o < €,(8) + 20, [ P*'| o . (3.2.12)
By (3.2.11), (3.2.12), and the choice of 4, in (1.4) we obtain

4 max{e,(s)}7_, max{e;};_

P*| <
H ”oo\ 4max{€,-}?=1_min{e"} ?=1

L<(4/3) max{e,(s)}7_,. (32.13)

Applying (3.2.13) in (3.2.11), we get

|P* |, < M(n—1) c(r)(8/3) max{e,(s)}"_,. (3.2.14)
We have
minfe, ()} 7, < [PXe < (B =x) [P¥ ]y i= 1 ean—1,
min{e;(s)}7_, <|P*(x3)| < (x5—75_1) | P¥ | o, i=2,..,n

Using (3.2.14) in the last inequalities we obtain

3 mi . s
et min{e;(s)}i_,

TP T 8max{e;(s))_, M(n—1) c(r)’

o 3min{e,(s)}7_,
YTt T 8 max{e;(s)}7_; M(n—1)c(r)’
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From (2.22), (2.23) and the definition of ¢;(s) we see that

3min{e;(s)}7_, > 9 min{e;} 7, > min{e;}7_, (3.2.16)
8 max{e;(s)}7_;  32max{e,}7_,  8max{e;};_,

Then by (3.2.15), (3.2.16), and (1.4), we get

i —X7_,>2h, i=1,.,n—1,
xi—1i_,>2h;, i=2,..,n.
Therefore
Ti—ti—h; >t —x7]—2H;>0, i=1,.,n—1,
s s s | —
ti—h;—ti_>x]—1i_,—2h;>0, i=2,..,n,

which means that (3.2.8) holds. Using the same arguments as in the proof
that 4(0)#0 we can show that A(s) #0 for each se [0, 1]. Now we can
continue the proof as in Theorem 3.1 in Bojanov and Daren [4] and get
the unique P(x)=P(1;x), {tF¥=1}}7_, and R(ey, .., e,)=R,, satisfying
the system (3.2.1). The details are omitted; see Bojanov and Daren [4].

It remains to show that r(e,, ..., ¢,) is a strictly increasing function of e;,
i=1,..,n Since A4(1)#0, the Implicit Function Theorem implies that
r(ey, ..., e,) is a differentiable function of e,. Moreover we have

OR _ Ay
de, A(1)

where 4, is obtained from A(1), replacing the column corresponding to R
by the derivative of the right-hand side of (3.2.1), with respect to e,.
Denote by f 1. the n—1 multiple integral over the intervals [¢; — /A,
(P R RSPy PP I 8 Y R R ST PRI P Sl P
[z,—h,, t,+h,]. Using the same arguments as in the evaluation of 4(0),
we find

OR 1§, det J(1) dz, - -dzyy dzyepy - dzy|
der X1y 2hie [, et T (1) dzy - -dz,_y deyyy o dz, |

which is positive for k=1, ..., n. This completes the proof of Theorem 3.

THEOREM 4. There exists a unique perfect spline P* of degree r with
n—r—1 knots and a unique set of points t* € Z® such that P* € W’ _(t*; h; e).
P* is uniquely characterized by the conditions

P*(t¥ —h)=P*(t¥+h,), i=2,..,n—1,
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and t¥=h,, tf=1—h,. This perfect spline is the unique solution to (1.5) for
p=o0.

Proof. 1t follows from Theorem 3 that there is unique perfect spline P*,
points t* e Z" and a constant R such that

P*e W’ (t*; h;e),
Pt} —h,)=P*(t¥+h;), i=2,..n—1,

IP*P|, = R(ey, .., ).

Now suppose that there exists a perfect spline P of degree r with n —r —1
knots such that P# P*, Pe W’ _(t*; h; e) for some point teEﬁ, t #t* and

1P oo < [P*P . (3.2.17)

P(x) has exactly n— 1 zeros: 74, ..., 7,_,. Let 7=0, 7,=1. If 1, —7,_, = 2h;
there exists a point #, € (7,_;, 7;) such that

P(in;—h;) = P(n;+ h;), if ie{2 ..,n—1},

ny=hy, n,=1—nh,, if i=1 or i=n,

i+h .
! f” P(x)dx=(—1)"1d,.

2/’[1- n;,—h;

The point 7, is the extremal point of the function F(x) = [**% P(¢) dt in the
interval (z;,_,, 7;) ifie {2,..,n—1}. If i=1 or i =n we have F(x) is strictly
monotone in the intervals [/,,7,], [7,_{,1—h,] and |F(x)| attains
maximal values for x=7, and x=p,, respectively. Therefore d;>e;. If
7,—7;, <2h; we have

Vi X _
- Zh |P(Zt)|>

1

! fy"P(t) di

e; <
"2k )y,

where [x;, y;1<[7,_1,7;] and z,e(x;, y;). Denote by 2h;=y,—x
h;<h,. Then

i’

%fe,-< |P(z:)]. (3.2.18)

1
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Therefore there exists a point #; € (t;_,, 7;) such that
P(y;—h}) = P(n,+ h}), if ie{2,.,n—1},

M= =1l df =1 or i=n

1 m+h .
P(t)di=(—1)""d,.
g, , POdi=(=1""d

From (3.2.18) d,>=|p(z;)| > (h;/h}) e;. The perfect spline P(x) satisfies the
following conditions

! m+hl{P d i—14 1
2h; L,-—h;- (X)dx=(=1)"""d;,  i=1..n,

P(y;—h) = P(y, + h)), i=2, . n—1, (3.2.19)
”P(F)H :R(dla seey dn);

where d;=e;, hi=h; if 7,—7,_,=2h, and d,>(h;/h})e; hi<h; if
T, — T <2h;.

Consider P*(x) in the interval [¢* —h;, t* +h;]. From Theorem 3 we
have that [t} —h;, t¥ +h,] <[t¥ ,, t¥], where ¢, i=1,..,n—1, are the
zeros of P* and <tf=0, t¥=1. Therefore there exist points
rie(tF—h;, t¥+h;) such that

1 ri+h
R *
=3y L._h;.P (x) dx
1 i +h h.
_ * _ i _
<2h; L*_hl_P(X)dx h;e,, i=1,.,n  (3.220)
P*(r;—hy) = P*(r,+ I}), i=2, ., n—1,

|P*D|| = R(¢y, o C,),

where r; =t} if h,=h;. We have d,;> c; at least for one i since P # P*. From
(3.2.19), (3.2.20) and the strong monotonicity of R given by Theorem 3 we
obtain

1P*O o, < 1P|,

which contradicts (3.2.17).
It remain to prove that P* is the unique solution to problem (1.5) for
p=o0. We will apply a similar approach to that in [13]. Assume that

fe W’ (t;h;e) for some point te Z" From Theorem 1 there exists a
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perfect spline P of degree r with n—r—1 knots for which (1/2h;)

fith, P(x)dx=(1)2h) [5* % f(x)dx, i=1,...n, and | PO, <[ /] . If
t#t*, then |P*| < ||P")| . Thusif fe W’ [0, 1] is a solution of (1.5),
it is necessary that

1 oo = 1P*P| (3.2.21)

and fe W’ _(t*; h;e).

Now we will prove f(t*—h;,)=f(tF+h,), i=2,..,n—1, for any f as
above. Assume that f(z* —h;) # f(t* +h;) for some je {2, .., n—1}. From
the Mean Value Theorem we have f(x;) = ( —1)/-1! e; for some point x; €
(t}—h;, tF+h;). By the character of the data there exist points 7, ;<
x;<t; such that f(z;_;)=0 and f(z;) =0. Let z;,_,, 7, be the nearest zeros
of f'to the point x;. There is a point 5, € (z,_,, ;) and a number &} € (0, /]
such that

;= 1y) = f(n; + hy),

1 otk i1

Analogously to (3.2.18) we see that d;>(h;/h})e;. Then using similar
arguments to those in (3.2.19) and (3.2.20) we can show that
[P < || £, which contradicts the minimality property of f. Thus
fax—=h)=faFr+h),i=2,.,n—1.

Assume that f# P*. Let ¢ be small. For 0 <o <1

|P*0(x)| = | P*D|| . > (1 —0) | fP(x)|

for each xe[0, 1]. Thus P* —(1 —0¢) f cannot be a constant on any sub-
interval of [0, 1]. For the appropriate ¢ the derivative (P* — (1 —a)f)’ has
a sign change in each (¢ — h;, t* + h;) because the function takes the same
value at the endpoints ¢* —h;, t* + h, and it is not identically a constant
on this interval. If P*—f is not identically zero in some (¢}—#h;,
t}o +h; 1), je{2, ..,n—1}, then since

j“’ [P*(x) — f(x)] dx =0,

*
J h/

(P* = f)tfF —hy) = (P* =) +hy),

o+ higg
| [P*(x)— f(x)] dx =0,

*
= hi

and

(P*_f)(t;k+1_hj+1):(P*_f)(l;'k+l +hj+l)9
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P — f has at least two zeros in (¢ —h;, t* +h;] and at least two zeros in

[t —hj1, 1+ hy ). Therefore (P*—f)" and thus (P*—(1—a) f)

has at least three sign changes in (¢ —h;, %, +h;, ). Together we now

have at least n—1 sign changes of (P*—(1—g) f). Then by Rolle’s
Theorem (P* — (1 —a) ) has at least n — r sign changes on [0, 1], which
is a contradiction because (P* — (1 —o) £) has the same number of sign
changes as P*™); ie., exactly n —r — 1. So now assume P* — f'is identically
zero on [tFf¥—hy, t¥ +h,_,]. If (P*—f) has a sign change in
[t —h,, t¥ —h,] we proceed as above. If (P* — f)' does not change sign
in [¢f—hy,t¥—h,], then P*—f is monotone on this interval. Since
P* — fvanishes at t, — h, while the integral over [¢§ —h,, t{f + h,] is zero,
this implies that P* — fis identically zero on [ ¢§ —hy, tF¥ —h,]. We use the
same argument on [¢¥_,+h, 4, tF+h,]. This proves the uniqueness.
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